These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oriented Thin Films of Electroactive Triphenylene Catecholate-Based Two-Dimensional Metal-Organic Frameworks. Author: Mähringer A, Jakowetz AC, Rotter JM, Bohn BJ, Stolarczyk JK, Feldmann J, Bein T, Medina DD. Journal: ACS Nano; 2019 Jun 25; 13(6):6711-6719. PubMed ID: 31046244. Abstract: Two-dimensional triphenylene-based metal-organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse optoelectronic devices. However, to date, a controlled deposition strategy applicable for the different members of this MOF family has not been reported yet. Herein, we present the synthesis of highly oriented thin films of TP-MOFs by vapor-assisted conversion (VAC). We targeted the M-CAT-1 series comprising hexahydroxytriphenylene organic ligands and metal-ions such as Ni2+, Co2+, and Cu2+. These planar organic building blocks are connected in-plane to the metal-ions through a square planar node forming extended sheets which undergo self-organization into defined stacks. Highly oriented thin Ni- and Co-CAT-1 films grown on gold substrates feature a high surface coverage with a uniform film topography and thickness ranging from 180 to 200 nm. The inclusion of acid modulators in the synthesis enabled the growth of films with a preferred orientation on quartz and on conductive substrates such as indium-doped tin oxide (ITO). The van der Pauw measurements performed across the M-CAT-1 films revealed high electrical conductivity values of up to 10-3 S cm-1 for both the Ni- and Co-CAT-1 films. Films grown on quartz allowed for a detailed photophysical characterization by means of UV-vis, photoluminescence, and transient absorption spectroscopy. The latter revealed the existence of excited states on a nanosecond time scale, sufficiently long to demonstrate a photoinduced charge generation and extraction in Ni-CAT-1 films. This was achieved by fabricating a basic photovoltaic device with an ITO/Ni-CAT-1/Al architecture, thus establishing this MOF as a photoactive material. Our results point to the intriguing capabilities of these conductive M-CAT-1 materials and an additional scope of applications as photoabsorbers enabled through VAC thin-film synthesis.[Abstract] [Full Text] [Related] [New Search]