These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Yield performance of machine-transplanted double-season rice grown following oilseed rape.
    Author: Huang M, Tian A, Zhou X, Gao W, Li Z, Chen G, Li Z, Chen Y, Liu L, Yin X, Zou Y.
    Journal: Sci Rep; 2019 May 02; 9(1):6818. PubMed ID: 31048747.
    Abstract:
    Growing oilseed rape in the fallow season may be a feasible alternative to growing green manure (e.g. Chinese milk vetch) for improving rice productivity. The objective of this study was to determine the yield performance of machine-transplanted double-season rice (i.e. early- and late-season rice) grown following oilseed rape. Field experiments were conducted to compare machine-transplanted double-season rice grown following oilseed rape, Chinese milk vetch and fallow (i.e. no crop) at Hengyang and Yueyang, Hunan Province, China in three cropping cycles from 2014 to 2017. Results showed that machine-transplanted double-season rice grown following oilseed rape and Chinese milk vetch produced similar grain yield, which was higher than that grown following fallow across two sites and three cropping cycles. The higher grain yield of machine-transplanted double-season rice grown following oilseed rape and Chinese milk vetch was attributable to improvement in both sink size (spikelet number per m2) and source capacity (total biomass). However, the reasons for the improved sink size of machine-transplanted double-season rice grown following oilseed rape and Chinese milk vetch were not entirely the same. Growing oilseed rape increased panicle size (spikelet number per panicle) and panicle number in early- and late-season rice, respectively, while growing Chinese milk vetch increased panicle number in both the early- and late-season rice. Our study suggests that growing oilseed rape in the fallow season is a useful alternative strategy for improving productivity of machine-transplanted double-season rice.
    [Abstract] [Full Text] [Related] [New Search]