These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Impact of Benzannulation Site at the Diimine (N^N) Ligand on the Excited-State Properties and Reverse Saturable Absorption of Biscyclometalated Iridium(III) Complexes. Author: Liu B, Lystrom L, Brown SL, Hobbie EK, Kilina S, Sun W. Journal: Inorg Chem; 2019 May 06; 58(9):5483-5493. PubMed ID: 31060198. Abstract: Ten biscyclometalated monocationic Ir(III) complexes were synthesized and studied to elucidate the effects of extending π-conjugation of the diimine ligand (N^N = 2,2'-bipyridine in Ir1, 2-(pyridin-2-yl)quinoline in Ir2, 2-(pyridin-2-yl)[6,7]benzoquinoline in Ir3, 2-(pyridin-2-yl)-[7,8]benzoquinoline in Ir4, phenanthroline in Ir5, benzo[ f][1,10]phenanthroline in Ir6, naphtho[2,3- f][1,10]phenanthroline in Ir7, 2,2'-bisquinoline in Ir8, 3,3'-biisoquinoline in Ir9, and 1,1'-biisoquinoline in Ir10) via benzannulation at 2,2'-bipyridine on the excited-state properties and reverse saturable absorption (RSA) of these complexes. Either a bathochromic or a hypsochromic shift of the charge-transfer absorption band and emission spectrum was observed depending on the benzannulation site at the 2,2'-bipyridine ligand. Benzannulation at the 3,4-/3',4'-position or 5,6-/5',6'-position of 2,2'-bipyridine ligand or at the 6,7-position of the quinoline ring on the N^N ligand caused red-shifted charge-transfer absorption band and emission band for complexes Ir2, Ir8, Ir10 vs Ir1 and Ir3 vs Ir2, while benzannulation at the 4,5-/4',5'-position of 2,2'-bipyridine ligand or at the 7,8-position of the quinoline ring on the N^N ligand induced a blue shift of the charge-transfer absorption and emission bands for complex Ir9 vs Ir1 and Ir4 vs Ir2. However, benzannulation at the 2,2',3,3'-position of 2,2'-bipyridine or 5,6-position of phenanthroline ligand had no impact on the energy of the charge-transfer absorption band and emission band of complexes Ir5-Ir7 compared with those of Ir1. The observed phenomenon was explained by the frontier molecular orbital (FMO) symmetry analysis. Site-dependent benzannulation also impacted the spectral feature and intensity of the triplet transient absorption spectra and lifetimes drastically. Consequently, the RSA strength of these complexes varied with a trend of Ir7 > Ir5 ≈ Ir6 ≈ Ir1 > Ir3 > Ir2 > Ir10 > Ir4 > Ir8 > Ir9 at 532 nm for 4.1 ns laser pulses.[Abstract] [Full Text] [Related] [New Search]