These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ag/AgCl/MIL-101(Fe) Catalyzed Degradation of Methylene Blue under Visible Light Irradation. Author: Liu Y, Xie Y, Dai M, Gong Q, Dang Z. Journal: Materials (Basel); 2019 May 05; 12(9):. PubMed ID: 31060283. Abstract: A novel photo-Fenton catalyst named Ag/AgCl/MIL-101(Fe) was synthesized by the method of precipitation and photo reduction and characterized by X-ray diffraction patterns (XRD), Brunauer-Emmett-Teller (BET) measurements, Fourier transform infrared spectra (FTIR), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra. Moreover, the catalytic activity of the synthesized catalyst was tested using methylene blue (MB) as the target pollutant. The obtained results illustrated that the plasmonic material Ag/AgCl was successfully loaded on MIL-101(Fe) and the obtained catalyst exhibited an excellent catalytic activity under visible light at the neutral pH. According to the analyses of Plackett-Burman and Box-Behnken design, the optimum conditions for MB degradation were obtained. Under these conditions, the MB decolorization and mineralization efficiencies could reach to 99.75% and 65.43%, respectively. The recycling experiments also showed that the as-prepared catalyst displayed good reusability. In addition, the possible reaction mechanisms for the heterogeneous photo-Fenton system catalyzed by Ag/AgCl/MIL-101(Fe) were derived. The synthesized catalyst provides a promising approach to degrade organic pollutants in waste water.[Abstract] [Full Text] [Related] [New Search]