These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphatidylethanolamine biosynthesis in rat mammary carcinoma cells that require and do not require ethanolamine for proliferation.
    Author: Kano-Sueoka T, King DM.
    Journal: J Biol Chem; 1987 May 05; 262(13):6074-81. PubMed ID: 3106352.
    Abstract:
    Epithelial cells and some of their transformed derivatives require ethanolamine to grow normally in defined culture medium. When these cells are cultured without ethanolamine, the amount of cellular phosphatidylethanolamine is considerably reduced. Using a set of rat mammary carcinoma cell lines whose growth is responsive (64-24 cells) and not responsive (22-1 cells) to ethanolamine, the biochemical mechanism of ethanolamine responsiveness was investigated. The biosynthesis and metabolism of phospholipid, particularly of those involving phosphatidylethanolamine, were thus compared between the two types of cells. The incorporation of [3H]serine into phosphatidylserine and phosphatidylethanolamine in 64-24 cells was 60 and 37%, respectively, of those in 22-1 cells. However, the activity of phosphatidylserine decarboxylase was virtually the same in these cell lines. When these cells were cultured in the presence of [32P]phosphatidylcholine and [32P]phosphatidylethanolamine, the rate of accumulation of 32P-labeled phosphatidylserine from the radioactive phosphatidylethanolamine was considerably reduced in 64-24 cells compared to that in 22-1 cells, although the rate of synthesis of phosphatidylserine and phosphatidylethanolamine from the radioactive phosphatidylcholine was similar between the two cell lines. The rate of labeling phosphatidylcholine from the radioactive phosphatidylethanolamine was also reduced in 64-24 cells, although the difference was not as great as that of phosphatidylserine. Incorporation of 32P into phosphatidylethanolamine was correlated with the concentration of ethanolamine in the culture medium in 64-24 cells, whereas in 22-1 cells the incorporation was not influenced by ethanolamine. Enzyme activities of the CDP-ethanolamine pathway were not significantly different between the two cell lines. The rate of degradation of phosphatidylethanolamine was also similar in these cell lines. These results show that ethanolamine responsiveness of 64-24 cells, and probably other epithelial cells, is due to a limited ability to synthesize phosphatidylserine resulting from a limited base-exchange activity utilizing phosphatidylethanolamine.
    [Abstract] [Full Text] [Related] [New Search]