These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protection of the myocardium against ischemia/reperfusion injury by punicalagin through an SIRT1-NRF-2-HO-1-dependent mechanism.
    Author: Yu LM, Dong X, Xue XD, Zhang J, Li Z, Wu HJ, Yang ZL, Yang Y, Wang HS.
    Journal: Chem Biol Interact; 2019 Jun 01; 306():152-162. PubMed ID: 31063767.
    Abstract:
    Punicalagin has been found to exert cardiac protective effects against myocardial ischemia/reperfusion (MI/R) injury, although the detailed mechanisms remain largely unknown. This experiment was performed to explore the potential involvement of silent information regulator 1 (SIRT1)-NFE2-related factor 2 (NRF-2)-heme oxygenase-1 (HO-1) pathway in the cardiac protective actions of punicalagin. Sprague-Dawley (SD) rats were subjected to MI/R operation with or without punicalagin treatment (40 mg kg-1d-1). We showed that punicalagin-treated group exhibited enhanced cardiac function, reduced myocardial infarction and decreased cleaved caspase-3 level. Furthermore, myocardial oxidative/nitrosative stress was ameliorated by punicalagin as evidenced by suppressed superoxide generation, gp91phox and iNOS expressions, NO metabolites as well as myocardial nitrotyrosine level. Additionally, punicalagin decreased myocardial IL-6, TNF-α and the levels of ICAM-1, VCAM-1 and IKK-β expressions as well as IκB-α phosphorylation and NF-κB nuclear translocation. However, these effects were abolished by EX527 (5 mg kg-1d-1, a selective SIRT1 inhibitor). We further found that punicalagin dose-dependently enhanced SIRT1 nuclear distribution and NRF-2-HO-1 signaling. While EX527 treatment not only reduced SIRT1 activity, but also reversed the activation of NRF-2-HO-1 pathway. Collectively, these results revealed that punicalagin reduced cardiac oxidative/nitrosative stress and inflammatory response induced by MI/R operation through SIRT1-mediated activation of NRF-2-HO-1 signaling.
    [Abstract] [Full Text] [Related] [New Search]