These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of bicuculline-induced status epilepticus on prostaglandins and hydroxyeicosatetraenoic acids in rat brain subcellular fractions. Author: Birkle DL, Bazan NG. Journal: J Neurochem; 1987 Jun; 48(6):1768-78. PubMed ID: 3106572. Abstract: Rat cerebrum, prelabeled in vivo by intraventricular injection of [1-14C]arachidonic acid, was used to assess cyclooxygenase and lipoxygenase reaction products in total homogenates, cytosol, synaptosomes, and microsomes. Effects of bicuculline-induced status epilepticus on arachidonic acid metabolism in synaptosomes and microsomes were also measured. Lipoxygenase activity, resulting in the synthesis of hydroxyeicosatetraenoic acids (HETEs), and cyclooxygenase activity, resulting in the synthesis of prostaglandins (PGs), were measured by reverse-phase and normal-phase HPLC with flow scintillation detection. Endogenous lipoxygenase products in synaptosomes were identified by capillary gas chromatography-mass spectrometry. PGs and HETEs were detected in all subcellular fractions. The synaptosomal fraction showed the highest lipoxygenase activity, with 5-HETE, 12-HETE, and leukotriene B4 as the major products. Following bicuculline-induced status epilepticus, endogenous free arachidonic acid and other fatty acids accumulated in synaptosomes, but not in microsomes. Incorporation of [1-14C]arachidonic acid into synaptosomal and microsomal phospholipids was decreased after bicuculline treatment. Bicuculline-induced status epilepticus resulted in increased synthesis of HETEs in synaptosomes. PG synthesis increased in the microsomal fraction. When [1-14C]arachidonic acid-labeled synaptosomes and microsomes were incubated for 1 h at 37 degrees C the synthesis of eicosanoids, particularly PGD2, was increased significantly in bicuculline-treated rats, as compared with untreated rats. Depolarization (45 mM K+) of synaptosomes induced a loss of [1-14C]arachidonic acid from phosphatidylinositol, and increased the synthesis of PGD2 and HETEs, an effect that was enhanced in bicuculline-treated rats. This study localizes changes in arachidonic acid metabolism and lipoxygenase activity resulting from bicuculline-induced status epilepticus in the brain subcellular fraction enriched in nerve endings.[Abstract] [Full Text] [Related] [New Search]