These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The repression and reciprocal interaction of DNA methyltransferase 1 and specificity protein 1 contributes to the inhibition of MET expression by the combination of Chinese herbal medicine FZKA decoction and erlotinib.
    Author: Zheng F, Zhao Y, Li X, Tang Q, Wu J, Wu W, Hann SS.
    Journal: J Ethnopharmacol; 2019 Jul 15; 239():111928. PubMed ID: 31077779.
    Abstract:
    ETHNOPHARMACOLOGICAL RELEVANCE: The Chinese herbal medicine Fuzheng Kang-Ai (FZKA) decoction obtained from Guangdong Kangmei Pharmaceutical Company, which contains 12 components with different types of constituents, has been used as part of the adjuvant treatment of lung cancer for decades. We previously showed that FZKA decoction enhances the growth inhibition of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-resistant non-small cell lung cancer (NSCLC) cells by suppressing glycoprotein mucin 1 (MUC1) expression. However, the molecular mechanism underlying the therapeutic potential, particularly in sensitizing or/and enhancing the anti-lung cancer effect of EGFR-TKIs, remains unclear. MATERIALS AND METHODS: Cell viability was measured using 3-(4, 5-diMEThylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and 5-ethynyl -2'-deoxyuridine (EdU) assays. Western blot analysis was performed to examine the protein expressions of DNA methyltransferase 1 (DNMT1), specificity protein 1 (SP1), and MET, an oncogene encoding for a trans-membrane tyrosine kinase receptor activated by the hepatocyte growth factor (HGF). The expression of MET mRNA was measured by quantitative real-time PCR (qRT-PCR). Exogenous expression of DNMT1 and SP1, and MET were carried out by transient transfection assays. The promoter activity of MET was tested using Dual-luciferase reporter assays. A nude mouse xenografted tumor model further evaluated the effect of the combination of FZKA decoction and erlotinib in vivo. RESULTS: The combination of FZKA and erlotinib produced an even greater inhibition of NSCLC cell growth. FZKA decreased the expressions of DNMT1, SP1, and MET (c-MET) proteins, and the combination of FZKA and erlotinib demonstrated enhanced responses. Interestingly, there was a mutual regulation of DNMT1 and SP1. In addition, exogenously expressed DNMT1 and SP1 blocked the FZKA-inhibited c-MET expression. Moreover, excessive expressed MET neutralized FZKA-inhibited growth of NSCLC cells. FZKA decreased the mRNA and promoter activity of c-MET, which was not observed in cells with ectopic expressed DNMT1 gene. Similar findings were observed in vivo. CONCLUSION: FZKA decreases MET gene expression through the repression and mutual regulation of DNMT1 and SP1 in vitro and in vivo. This leads to inhibit the growth of human lung cancer cells. The combination of FZKA and EGFR-TKI erlotinib exhibits synergy in this process. The regulatory loops among the DNMT1, SP1 and MET converge in the overall effects of FZKA and EGFR-TKI erlotinib. This in vitro and in vivo study clarifies an additional novel molecular mechanism underlying the anti-lung cancer effects in response to the combination of FZKA and erlotinib in gefitinib-resistant NSCLC cells.
    [Abstract] [Full Text] [Related] [New Search]