These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tamibarotene Improves Hippocampus Injury Induced by Focal Cerebral Ischemia-Reperfusion via Modulating PI3K/Akt Pathway in Rats.
    Author: Tian X, An R, Luo Y, Li M, Xu L, Dong Z.
    Journal: J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):1832-1840. PubMed ID: 31078389.
    Abstract:
    GOAL: The present study aimed to examine whether Am80 (tamibarotene) protects the hippocampus against cerebral ischemia-reperfusion (I/R) injury and whether phosphoinositide-3-kinase/Akt (PI3K/Akt) pathway mediates this effect. MATERIALS AND METHODS: Rats were subjected to 90 minutes of middle cerebral artery occlusion followed by 24 hours of reperfusion. The animals were randomly divided into 7 groups: sham-operated group; I/R group; groups pretreated with 2 mg/kg, 6 mg/kg, and 10 mg/kg of Am80; Am80 (6 mg/kg) combined with the selective PI3K inhibitor wortmannin (0.6 mg/kg), and wortmannin (0.6 mg/kg) only group. After 24 hours of reperfusion, neurological deficits and infarct volume were measured. Pathological changes in hippocampal neurons were analyzed by transmission electron microscopy. Neuronal survival was examined by TUNEL staining. The expression of Bcl-2, Bax, and Akt, and Akt phosphorylation (p-Akt) were measured by Western blotting and quantitative real-time polymerase chain reaction. FINDINGS: The pretreatment with Am80 improved the neurologic deficit score, reduced infarct volume, and decreased the number of TUNEL-positive cells in the hippocampus. Moreover, Am80 pretreatment downregulated the expression of Bax, upregulated the expression of Bcl-2, and increased the level of p-Akt. Wortmannin abolished in part the increase in p-Act and the neuroprotective effect exerted on the ischemic by Am80 pretreatment. CONCLUSIONS: Our results documented that Am80 pretreatment protects ischemic hippocampus after cerebral I/R by regulating the expression of apoptosis-related proteins through the activation of the PI3K/Akt signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]