These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Low-Carbohydrate Training Increases Protein Requirements of Endurance Athletes.
    Author: Gillen JB, West DWD, Williamson EP, Fung HJW, Moore DR.
    Journal: Med Sci Sports Exerc; 2019 Nov; 51(11):2294-2301. PubMed ID: 31083047.
    Abstract:
    INTRODUCTION: Training with low-carbohydrate (CHO) availability enhances markers of aerobic adaptation and has become popular to periodize throughout an endurance-training program. However, exercise-induced amino acid oxidation is increased with low muscle glycogen, which may limit substrate availability for postexercise protein synthesis. We aimed to determine the impact of training with low-CHO availability on estimates of dietary protein requirements. METHODS: Eight endurance-trained males (27 ± 4 yr, 75 ± 10 kg, 67 ± 10 mL·kg body mass·min) completed two trials matched for energy and macronutrient composition but with differing CHO periodization. In the low-CHO availability trial (LOW), participants consumed 7.8 g CHO·kg before evening high-intensity interval training (10 × 5 min at 10-km race pace, 1 min rest) and subsequently withheld CHO postexercise (0.2 g·kg). In the high-CHO availability trial (HIGH), participants consumed 3 g CHO·kg during the day before high-intensity interval training, and consumed 5 g CHO·kg that evening to promote muscle glycogen resynthesis. A 10-km run (~80% HRmax) was performed the following morning, fasted (LOW) or 1 h after consuming 1.2 g CHO·kg (HIGH). Whole-body phenylalanine flux and oxidation were determined over 8 h of recovery via oral [C]phenylalanine ingestion, according to standard indicator amino acid oxidation methodology, while consuming sufficient energy, 7.8 g CHO·kg·d, and suboptimal protein (0.93 g·kg·d). RESULTS: Fat oxidation (indirect calorimetry) during the 10-km run was higher in LOW compared with HIGH (0.99 ± 0.35 g·min vs 0.60 ± 0.26 g·min, P < 0.05). phenylalanine flux during recovery was not different between trials (P > 0.05) whereas phenylalanine oxidation (reciprocal of protein synthesis) was higher in LOW compared with HIGH (8.8 ± 2.7 μmol·kg·h vs 7.9 ± 2.4 μmol·kg·h, P < 0.05), suggesting a greater amino acid requirement to support rates of whole-body protein synthesis. CONCLUSIONS: Our findings suggest that performing endurance exercise with low-CHO availability increases protein requirements of endurance athletes.
    [Abstract] [Full Text] [Related] [New Search]