These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of a guanine nucleotide regulatory protein in the activation of phospholipase C by different chemoattractants.
    Author: Verghese MW, Charles L, Jakoi L, Dillon SB, Snyderman R.
    Journal: J Immunol; 1987 Jun 15; 138(12):4374-80. PubMed ID: 3108387.
    Abstract:
    It is well established that formyl peptide chemoattractants can activate a phospholipase C in leukocytes via a pertussis toxin (PT)-sensitive guanine nucleotide regulatory (G) protein. Whether this pathway is similarly used by chemoattractant receptors as a class has been unclear. We now report that lipid and peptide chemoattractants in direct comparative studies induced similar amounts of initial (less than or equal to 15 sec) inositol trisphosphate (IP3) release in human polymorphonuclear leukocytes, but the response to lipid chemoattractants was more transient. Production of IP3 by all chemotactic factors was inhibited by treatment of the cells with PT, indicating that chemotactic factor receptors as a class are coupled to phospholipase C via a G protein that is a substrate for ADP ribosylation by PT. The peptide and lipid factors had comparable chemotactic activity, which was also inhibitable by PT. However, transient activation of phospholipase C is apparently an insufficient signal for full cellular activation, since the lipid chemotactic factor leukotriene B4 and platelet-activating factor were poor stimuli for O2- production and lysosomal enzyme secretion compared with N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe). Nonetheless, treatment with PT inhibited O2- production and enzyme secretion in response to all chemoattractants, but as previously noted, did not affect Ca2+ ionophores, lectins, or phorbol myristate acetate. Formyl peptide and lipid chemotactic factors induced similar levels of Ca2+ mobilization when monitored by Quin 2 or chlortetracycline (CTC) fluorescence. Although these responses to fMet-Leu-Phe were blocked by PT, the Quin 2 and initial CTC response to the lipid factors were only partially susceptible. Thus, the lipid factors apparently utilize an additional PT-resistant mechanism for redistributing intracellular Ca2+. This latter process requires extracellular Ca2+ and may be independent of the PT-sensitive G protein.
    [Abstract] [Full Text] [Related] [New Search]