These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thyrotropin-releasing hormone activates Na+/H+ exchange in rat pituitary cells. Author: Hallam TJ, Tashjian AH. Journal: Biochem J; 1987 Mar 01; 242(2):411-6. PubMed ID: 3109389. Abstract: The effects of thyrotropin-releasing hormone (TRH) and 12-O-tetradecanoylphorbol 13-acetate (TPA) on cytosolic pH (pHi) were studied on GH4C1 pituitary cells loaded with the fluorescent pH indicator bis(carboxyethyl)carboxyfluorescein (BCECF) and the fluorescent Ca2+ indicator quin2. TRH, which was minimally effective at around 10(-9) M, and TPA, 100 nM, produced very small elevations in pHi of about 0.05 pH units from the normal basal resting pHi of GH4C1 cells of around 7.05. The effects were more marked after acid-loading the cells using 1 micrograms of nigericin/ml. Preincubation with amiloride or replacing the extracellular Na+ with choline+ completely blocked the elevations stimulated by TRH or TPA, consistent with an activation of the Na+/H+ antiport mechanism. The effects were completely independent of the cytoplasmic free calcium concentration ([Ca2+]i). The calcium ionophore ionomycin produced an elevation in [Ca2+]i with no concomitant effect on pHi, and amiloride, although completely inhibiting the pH change stimulated by TRH, failed to affect the initial stimulated [Ca2+]i transient. Although the data are consistent with an elevation in pHi by TRH which is caused by stimulation of a protein kinase C and subsequent activation of the antiporter, the rapidity of the onset of the pHi response to TRH could not be mimicked by a combination of TPA and ionomycin. These results, together with previous findings which show that secretion can be mimicked by TPA and ionomycin, suggest that TRH-stimulated Na+/H+ exchange plays no part in the acute stimulation of secretion, but that TRH increases the pH-sensitivity of the antiport system during increased synthesis of prolactin and growth hormone.[Abstract] [Full Text] [Related] [New Search]