These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Competition between cubic and tetragonal phases in all-d-metal Heusler alloys, X2-x Mn1+x V (X = Pd, Ni, Pt, Ag, Au, Ir, Co; x = 1, 0): a new potential direction of the Heusler family. Author: Han Y, Wu M, Feng Y, Cheng Z, Lin T, Yang T, Khenata R, Wang X. Journal: IUCrJ; 2019 May 01; 6(Pt 3):465-472. PubMed ID: 31098027. Abstract: In this work, a series of all-d-metal Heusler alloys, X2 - x Mn1 + x V (X = Pd, Ni, Pt, Ag, Au, Ir, Co; x; = 1, 0), were predicted by first principles. The series can be roughly divided into two categories: XMn2V (Mn-rich type) and X2MnV (Mn-poor type). Using optimized structural analysis, it is shown that the ground state of these all-d-metal Heusler alloys does not fully meet the site-preference rule for classic full-Heusler alloys. All the Mn-rich type alloys tend to form the L21 structure, where the two Mn atoms prefer to occupy the A (0, 0, 0) and C (0.5, 0.5, 0.5) Wyckoff sites, whereas for the Mn-poor-type alloys, some are stable with XA structures and some are not. The c/a ratio was also changed while maintaining the volume the same as in the cubic state to investigate the possible tetragonal transformation of these alloys. The Mn-rich Heusler alloys have strong cubic resistance; however, all the Mn-poor alloys prefer to have a tetragonal state instead of a cubic phase through tetragonal transformations. The origin of the tetragonal state and the competition between the cubic and tetragonal phases in Mn-poor alloys are discussed in detail. Results show that broader and shallower density-of-states structures at or in the vicinity of the Fermi level lower the total energy and stabilize the tetragonal phases of X2MnV (X = Pd, Ni, Pt, Ag, Au, Ir, Co). Furthermore, the lack of virtual frequency in the phonon spectra confirms the stability of the tetragonal states of these Mn-poor all-d-metal Heusler alloys. This work provides relevant experimental guidance in the search for possible martensitic Heusler alloys in all-d-metal materials with less Mn and new spintronic and magnetic intelligent materials among all-d-metal Heusler alloys.[Abstract] [Full Text] [Related] [New Search]