These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Disruption and lateralization of cerebellar-cerebral functional networks in right temporal lobe epilepsy: A resting-state fMRI study.
    Author: Zhou X, Zhang Z, Liu J, Qin L, Pang X, Zheng J.
    Journal: Epilepsy Behav; 2019 Jul; 96():80-86. PubMed ID: 31103016.
    Abstract:
    Numerous studies have highlighted important roles for the cerebellum in cognition and movement, based on numerous fiber connections between the cerebrum and cerebellum. Abnormal cerebellar activity caused by epileptic discharges has been reported in previous studies, but researchers have not clearly determined whether aberrant cerebellar activity contributes to the disruption of the cerebellar-cerebral networks in right temporal lobe epilepsy (rTLE). Here, thirty patients with rTLE and 30 age- and sex-matched healthy controls (HCs) were recruited. All participants underwent the Attention Network Test (ANT) and resting-state functional magnetic resonance imaging (rs-fMRI) scanning. Cerebellar functional networks were extracted and analyzed by defining seeds in the cerebellum. A correlation analysis was performed between attentional performance and voxels that showed differences in functional connectivity (FC) in patients compared with HCs. Relative to HCs, patients exhibited significantly decreased FC in the dentate nucleus (DN) network (right DN with the left postcentral gyrus, left precentral gyrus, left cuneus, and left calcarine gyrus) and motor network (right cerebellar lobule V with the right putamen) and increased FC in the executive control network (right cerebellar crus I with the right inferior parietal lobule). Alerting, orienting, and executive control performances were impaired in patients with rTLE. Furthermore, the executive control effect was significantly correlated with aberrant FC strength between the right DN and the left precentral/postcentral gyrus. Our findings highlight that the disrupted cerebellar-cerebral functional network ipsilateral to the epileptogenic focus causes both impairments in and compensatory effects on attentional deficits in patients with rTLE. These findings contribute to our understanding of the cerebellar damage caused by epileptic discharges and the corresponding effect on attentional performance.
    [Abstract] [Full Text] [Related] [New Search]