These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Observation of Weyl Nodes in Robust Type-II Weyl Semimetal WP_{2}. Author: Yao MY, Xu N, Wu QS, Autès G, Kumar N, Strocov VN, Plumb NC, Radovic M, Yazyev OV, Felser C, Mesot J, Shi M. Journal: Phys Rev Lett; 2019 May 03; 122(17):176402. PubMed ID: 31107063. Abstract: Distinct to type-I Weyl semimetals (WSMs) that host quasiparticles described by the Weyl equation, the energy dispersion of quasiparticles in type-II WSMs violates Lorentz invariance and the Weyl cones in the momentum space are tilted. Since it was proposed that type-II Weyl fermions could emerge from (W,Mo)Te_{2} and (W,Mo)P_{2} families of materials, a large number of experiments have been dedicated to unveiling the possible manifestation of type-II WSMs, e.g., surface-state Fermi arcs. However, the interpretations of the experimental results are very controversial. Here, using angle-resolved photoemission spectroscopy supported by the first-principles calculations, we probe the tilted Weyl cone bands in the bulk electronic structure of WP_{2} directly, which are at the origin of Fermi arcs at the surfaces and transport properties related to the chiral anomaly in type-II WSMs. Our results ascertain that, due to the spin-orbit coupling, the Weyl nodes originate from the splitting of fourfold degenerate band-crossing points with Chern numbers C=±2 induced by the crystal symmetries of WP_{2}, which is unique among all the discovered WSMs. Our finding also provides a guiding line to observe the chiral anomaly that could manifest in novel transport properties.[Abstract] [Full Text] [Related] [New Search]