These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nicotine prevents anxiety-like behavioral responses in zebrafish. Author: Duarte T, Fontana BD, Müller TE, Bertoncello KT, Canzian J, Rosemberg DB. Journal: Prog Neuropsychopharmacol Biol Psychiatry; 2019 Aug 30; 94():109655. PubMed ID: 31112733. Abstract: Anxiety-related disorders are severe psychiatric conditions that involve complex physiological and behavioral maladaptive responses. The use of conspecific alarm substance (CAS) for inducing anxiety-like behaviors in fish species provides important translational insights of how aversive conditions modulate neurobehavioral functions. Because nicotine may elicit anxiolytic-like responses, here we investigated whether acute nicotine exposure prevents CAS-induced anxiogenic-like behaviors in zebrafish. We used both novel tank and light-dark tests as two well-established paradigms for measuring anxiety-like phenotypes. Fish were individually exposed to 1 mg/L nicotine or non-chlorinated water for 3 min and then transferred to other tanks in the absence or presence of 3.5 mL/L CAS for 5 min. Later, the behavior of fish was tested in the novel tank test or in the light-dark preference test. As expected, CAS triggered aversive behaviors by increasing bottom-dwelling, freezing, erratic movements, scototaxis, and risk assessment episodes. Nicotine alone elicited anxiolytic-like behaviors since it increased the time spent in the top, as well as the average duration of entry in the lit compartment. Moreover, nicotine pretreatment prevented CAS-induced aversive responses without changing locomotion, suggesting that anxiolysis could play a role, at least in part, to the behavioral effects of nicotine observed here. Overall, these novel findings show the beneficial effects of nicotine on anxiogenic responses in zebrafish. We also reinforce the practical advantages of this aquatic species to explore the relieving properties of nicotine, as well as to understand the neurobiological bases involved in anxiety-related disorders and associated therapeutic targets.[Abstract] [Full Text] [Related] [New Search]