These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide.
    Author: Wen J, Jiang T, Gao H, Zhou W, Xu Y, Zheng X, Liu Y, Xue X.
    Journal: J Environ Manage; 2019 Aug 15; 244():119-126. PubMed ID: 31112876.
    Abstract:
    Chromium-containing vanadium tailings (CCVT), an industrial waste, were utilized to extract chromium efficiently by soda roasting-water leaching process and for the preparation of highly pure chromium oxide. The effect of extraction of chromium under different roasting and leaching conditions were analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The maximum chromium extraction rate of 91.51% was obtained when soda (Na2CO3) and CCVT were mixed in a molar ratio (n (Na2CO3)/n (Cr2O3)) of 8, roasted at 900 °C and maintained for 120 min. Then, the roasted product was leached in water at 60 °C for 60 min with a liquid-solid mass ratio (L/S) of 10. During soda roasting, the chromium-containing phase (Fe0.6Cr0.4)2O3 combines with Na2CO3 to form Na2CrO4, which was then transferred into the leaching liquid, post water leaching. The by-products such as NaFeTiO4, Na2CaSiO4, and Na0.68Fe0.68Si0.32O2 were left in the leaching residue which was called chromium tailings (CT). 87.40% chromium oxide was recovered from the unpurified leaching liquid after reduction and precipitation by adding Na2S, followed by roasting the deposit. This process not only relieved the potential threat of the industrial waste CCVT to the environment but also realized the recovery of the valuable element chromium.
    [Abstract] [Full Text] [Related] [New Search]