These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reactions of O-acyl-L-serines with tryptophanase, tyrosine phenol-lyase, and tryptophan synthase. Author: Phillips RS. Journal: Arch Biochem Biophys; 1987 Jul; 256(1):302-10. PubMed ID: 3111376. Abstract: The reactions of tryptophanase, tyrosine phenol-lyase, and tryptophan synthase with a new class of substrates, the O-acyl-L-serines, have been examined. A method for preparation of O-benzoyl-L-serine in high yield from tert.-butyloxycarbonyl (tBoc)-L-serine has been developed. Reaction of the cesium salt of tBoc-L-serine with benzyl bromide in dimethylformamide gives tBoc-L-serine benzyl ester in excellent yield. Acylation with benzoyl chloride and triethylamine in acetonitrile followed by hydrogenolysis with 10% palladium on carbon in trifluoroacetic acid gives O-benzoyl-L-serine, isolated as the hydrochloride salt. O-Benzoyl-L-serine is a good substrate for beta-elimination or beta-substitution reactions catalyzed by both tryptophanase and tyrosine phenol-lyase, with Vmax values 5- to 6-fold those of the physiological substrates and comparable to that of S-(o-nitrophenyl)-L-cysteine. Unexpectedly, O-acetyl-L-serine is a very poor substrate for these enzymes, with Vmax values about 5% of those of the physiological substrates. Both O-acyl-L-serines are poor substrates for tryptophan synthase, measured either by the synthesis of 5-fluoro-L-tryptophan from 5-fluoroindole and L-serine catalyzed by the intact alpha 2 beta 2 subunit or by the beta-elimination reaction catalyzed by the isolated beta 2 subunit. With all three enzymes, the elimination of benzoate appears to be irreversible. These results suggest that the binding energy from the aromatic ring of O-benzoyl-L-serine is used to lower the transition-state barrier for the elimination reactions catalyzed by tryptophanase and tyrosine phenol-lyase. Our findings support the suggestion (M. N. Kazarinoff and E. E. Snell (1980) J. Biol. Chem. 255, 6228-6233) that tryptophanase undergoes a conformational change during catalysis and suggest that tyrosine phenol-lyase also may undergo a conformational change during catalysis.[Abstract] [Full Text] [Related] [New Search]