These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human platelets and megakaryocytes express defensin alpha 1.
    Author: Valle-Jiménez X, Ramírez-Cosmes A, Aquino-Domínguez AS, Sánchez-Peña F, Bustos-Arriaga J, Romero-Tlalolini MLÁ, Torres-Aguilar H, Serafín-López J, Aguilar Ruíz SR.
    Journal: Platelets; 2020; 31(3):344-354. PubMed ID: 31116063.
    Abstract:
    Platelets are anucleate cells that have a role in several innate immune functions, including the secretion of proteins with antimicrobial activity. Several studies have demonstrated the ability of platelets to secrete thrombin-induced platelet microbicidal proteins and antimicrobial peptides, like hBD-1. However, the expression and secretion of defensins of the alpha family by platelets have not been fully elucidated. The aim of this study was to characterize the expression of defensin alpha 1 (DEFA1) in human platelets and megakaryocytes. Our data indicate that DEFA1 mRNA and protein are present in peripheral blood platelets and in the megakaryoblastic leukemia cell line (MEG-01). DEFA1 co-localize with α-granules of platelets and MEG-01 cells, and was also detected in cytoplasm of MEG-01 cells. The assay of our in vitro model of platelet-like particles (PLPs) revealed that MEG-01 cells could transfer DEFA1 mRNA to their differentiated PLPs. Furthermore, platelets secreted DEFA1 into the culture medium when activated with thrombin, adenosine diphosphate, and lipopolysaccharide; meanwhile, MEG-01 cells secreted DEFA1 when activated with thrombopoietin. Platelet's secreted DEFA1 can rebind to platelet's surface and have antibacterial activity against the gram-negative bacteria Escherichia coli. In summary, our data indicate that both, human platelets and megakaryocytes, can express and secrete DEFA1. These results suggest a new role of platelets and megakaryocytes in the innate immune response.
    [Abstract] [Full Text] [Related] [New Search]