These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ascorbic Acid can Reverse the Inhibition of Phytic Acid, Sodium Oxalate and Sodium Silicate on Iron Absorption in Caco-2 cells.
    Author: He W, Li X, Ding K, Li Y, Li W.
    Journal: Int J Vitam Nutr Res; 2018 Feb; 88(1-2):65-72. PubMed ID: 31119995.
    Abstract:
    The objective of the present study is to determine the effect of phytic acid (PA), sodium oxalate (SO) and sodium silicate (SS) on non-heme iron bioavailability in both the presence and absence of ascorbic acid (AA) using an in vitro digestion/Caco-2 cell model, and the levels of AA needed to promote Fe absorption from Fe complexed with PA, SO or SS were also determined. The results indicated that adding PA at 1:1, 3:1, 5:1 and 10:1 molar as compared to Fe decreased ferrous iron uptake by 55.80 %(P < 0.05), 72.33 % (P < 0.05), 73.32 % (P < 0.05), and 73.26 % (P < 0.05), respectively. Adding SS at 1:1, 3:1, 5:1 and 10:1 molar as compared to Fe also decreased ferrous iron uptake by 51.40 % (P < 0.05), 66.12 %(P < 0.05), 60.19 % (P < 0.05) and 45.11 % (P < 0.05), respectively. Adding SO at 5:1 and 10:1 molar as compared to Fe decreased ferrous iron uptake by 40.81 % (P < 0.05) and 33.14 % (P < 0.05), respectively. When adding AA to iron plus organic acid medias reached molar ratios of 5:5:1 AA:PA:Fe, 3:5:1 AA:SO:Fe and 5:5:1 AA:SS:Fe, iron absorption from FeSO4 were significantly increased (P < 0.05). However, no significant effect was observed in iron absorption from FeCl3 when adding AA to the media. The results showed that PA, SS or SO decreases iron uptake from ferrous Fe, and AA can counteract their inhibiting effect on ferrous iron absorption and thus increase ferrous iron uptake. The results may be important for elucidating factors affecting iron bioavailability in the small intestine and for the development of foods with improved iron bioavailability.
    [Abstract] [Full Text] [Related] [New Search]