These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Keratinocyte Differentiation by Flow Cytometry. Author: Sanz-Gómez N, Freije A, Gandarillas A. Journal: Methods Mol Biol; 2020; 2109():83-92. PubMed ID: 31123997. Abstract: The epidermis is continuously exposed to environmental hazard and undergoes continuous cell renewal. The maintenance of the epidermal balance between proliferation and differentiation is essential for the homeostasis of the skin. Proliferation and terminal differentiation are compartmentalized in basal and suprabasal layers, respectively. These compartments can be identified by different patterns of protein expression that can be used as differentiation markers. For instance, components of the intermediate filament cytoskeleton keratins K5 and K14 are confined to the proliferative basal layer, while keratins K1 and K10, keratins K6 and K16, or precursors of the cornified envelope such as involucrin are expressed by suprabasal terminally differentiating cells. The analysis of the expression of these markers allows studying the imbalance typical of disease. Although these markers have been traditionally analyzed on skin microsections, on attached cells by immunostaining or by western blotting, it is possible and advantageous to quantify them by flow cytometry. We have extensively applied this technology onto human and mouse keratinocytes. Here we describe detailed flow cytometry methods to determine the differentiation status of keratinocyte populations.[Abstract] [Full Text] [Related] [New Search]