These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bioenergetic aspects of archaeal and bacterial hydrogen metabolism.
    Author: Pinske C.
    Journal: Adv Microb Physiol; 2019; 74():487-514. PubMed ID: 31126536.
    Abstract:
    Hydrogenases are metal-containing biocatalysts that reversibly convert protons and electrons to hydrogen gas. This reaction can contribute in different ways to the generation of the proton motive force (PMF) of a cell. One means of PMF generation involves reduction of protons on the inside of the cytoplasmic membrane, releasing H2 gas, which being without charge is freely diffusible across the cytoplasmic membrane, where it can be re-oxidized to release protons. A second route of PMF generation couples transfer of electrons derived from H2 oxidation to quinone reduction and concomitant proton uptake at the membrane-bound heme cofactor. This redox-loop mechanism, as originally formulated by Mitchell, requires a second, catalytically distinct, enzyme complex to re-oxidize quinol and release the protons outside the cell. A third way of generating PMF is also by electron transfer to quinones but on the outside of the membrane while directly drawing protons through the entire membrane. The cofactor-less membrane subunits involved are proposed to operate by a conformational mechanism (redox-linked proton pump). Finally, PMF can be generated through an electron bifurcation mechanism, whereby an exergonic reaction is tightly coupled with an endergonic reaction. In all cases the protons can be channelled back inside through a F1F0-ATPase to convert the 'energy' stored in the PMF into the universal cellular energy currency, ATP. New and exciting discoveries employing these mechanisms have recently been made on the bioenergetics of hydrogenases, which will be discussed here and placed in the context of their contribution to energy conservation.
    [Abstract] [Full Text] [Related] [New Search]