These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetics of PCB Microbial Dechlorination Explained by Freely Dissolved Concentration in Sediment Microcosms. Author: Needham TP, Payne RB, Sowers KR, Ghosh U. Journal: Environ Sci Technol; 2019 Jul 02; 53(13):7432-7441. PubMed ID: 31132852. Abstract: While microbial dechlorination of polychlorinated biphenyls (PCBs) has been observed in sediments over the last 3 decades, translation to the field has been difficult due to a lack of a clear understanding of the kinetic limitations. To address this issue, the present study used passive dosing/sampling to accurately measure the biological rate of dechlorination of 2,3,4,5-tetrachlorobiphenyl (PCB 61) to 2,3,5-trichlorobiphenyl (PCB 23) by an organohalide-respiring bacterium, Dehalobium chlorocoercia (DF-1). The biological rates were measured over an environmentally relevant concentration range of 1-50 ng/L of freely dissolved concentrations with and without the presence of sediment in bench-scale microcosm studies. The rate of dechlorination was found to be linearly dependent on the freely dissolved concentration of PCB 61 both in sediment and in sediment-free microcosms. The observed rate of dechlorination in sediment microcosms could be predicted within a factor of 2 based on the kinetics measured in sediment-free microcosms. A threshold for dechlorination was not observed down to an aqueous concentration of about 1 ng/L PCB 61. We demonstrate that with the combination of an accurate measurement of the aqueous-phase dechlorination kinetics and an understanding of the site-specific partitioning characteristics, it is possible to predict PCB microbial dechlorination in sediments.[Abstract] [Full Text] [Related] [New Search]