These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel cyanide supramolecular fluorescent chemosensor constructed from a quinoline hydrazone functionalized-pillar[5]arene.
    Author: Yang HL, Dang ZJ, Zhang YM, Wei TB, Yao H, Zhu W, Fan YQ, Jiang XM, Lin Q.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep 05; 220():117136. PubMed ID: 31136864.
    Abstract:
    Herein, we report a simple and novel approach for the design of fluorescent chemosensor through the self-assembly of functionalized monomer molecules. According to these approach, a novel supramolecular fluorescent chemosensor (SPMS) was successfully constructed by self-assembly of a quinoline hydrazone functionalized pillar[5]arene monomer PM. Interestingly, upon the addition of CN-, the solution of SPMS instantly shows dramatic fluorescent enhancement and emitting bright blue emission. Meanwhile, the fluorescence quantum yields show distinct increase from 0.0582 of SPMS to 0.3952 of SPMS + CN-. The detection limit (LOD) of SPMS for CN- is 9.70 × 10-8 M, which indicated high sensitivity. Moreover, the SPMS is selective for CN- even in the presence of other anions, the fluorescent detection process of SPMS for CN- was not interfered by other competitive anions (F-, Cl-, Br-, I-, N3-, OH-, SCN-, HSO4-, AcO-, H2PO4- and ClO4-). Notably, in the CN- sensing process, the self-assembly structure of the supramolecular chemosensor SPMS didn't show any disassembly. This work provides a novel approach for instant detection of CN- through a self-assembled supramolecular fluorescent chemosensor in aqueous system. Moreover, the test strips based on SPMS were fabricated, which could serve as convenient and efficient CN- test kits.
    [Abstract] [Full Text] [Related] [New Search]