These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: From Snake Venom's Disintegrins and C-Type Lectins to Anti-Platelet Drugs. Author: Lazarovici P, Marcinkiewicz C, Lelkes PI. Journal: Toxins (Basel); 2019 May 27; 11(5):. PubMed ID: 31137917. Abstract: Snake venoms are attractive natural sources for drug discovery and development, with a number of substances either in clinical use or in research and development. These drugs were developed based on RGD-containing snake venom disintegrins, which efficiently antagonize fibrinogen activation of αIIbβ3 integrin (glycoprotein GP IIb/IIIa). Typical examples of anti-platelet drugs found in clinics are Integrilin (Eptifibatide), a heptapeptide derived from Barbourin, a protein found in the venom of the American Southeastern pygmy rattlesnake and Aggrastat (Tirofiban), a small molecule based on the structure of Echistatin, and a protein found in the venom of the saw-scaled viper. Using a similar drug discovery approach, linear and cyclic peptides containing the sequence K(R)TS derived from VP12, a C-type lectin protein found in the venom of Israeli viper venom, were used as a template to synthesize Vipegitide, a novel peptidomimetic antagonist of α2β1 integrin, with anti-platelet activity. This review focus on drug discovery of these anti-platelet agents, their indications for clinical use in acute coronary syndromes and percutaneous coronary intervention based on several clinical trials, as well as their adverse effects.[Abstract] [Full Text] [Related] [New Search]