These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MicroRNA-298 Exacerbates Myocardial Ischemic Injury via Targeting Cyclin D1.
    Author: Liu L, Li J, Wang R, Wang Y, Wang G.
    Journal: Pharmazie; 2019 Jun 01; 74(6):369-373. PubMed ID: 31138376.
    Abstract:
    The aim of this study was to explore the role and regulatory mechanism of microRNA-298 (miR-298) in myocardial ischemic injury. H9c2 cardiomyocytes were cultured under hypoxia (3 % O₂) conditions to induce myocardial ischemic injury. Subsequently, the effects of miR-298 overexpression and suppression on hypoxia-induced myocardial damage in H9c2 cells were investigated. Moreover, the target of miR-298 was identified in H9c2 cells and the relationship between miR-298 and the activation of PTEN/PI3K/AKT signaling pathway was explored. miR-298 was upregulated in hypoxia-stimulated H9c2 cells. Overexpression of miR-298 distinctly aggravated hypoxia-induced myocardial damage in hypoxia-treated H9c2 cells, whereas inhibition of miR-298 alleviated hypoxia-induced injury. Moreover, miR-298 negatively regulated the expression of cyclin D1, and cyclin D1 was a target of miR-298 in H9c2 cells. Suppression of cyclin D1 significantly reversed the effects of suppression of miR-298 on hypoxia-induced myocardial damage. Lastly, inhibition of miR-298 activated the PTEN/PI3K/AKT signaling pathway, and this effect could be reversed after suppression of cyclin D1. Our results reveal that miR-298 may exacerbate myocardial ischemic injury by targeting cyclin D1 and regulating the activation of PTEN/PI3K/AKT signaling pathway. miR-298 may serve as a promising targets for reducing myocardial ischemic injury.
    [Abstract] [Full Text] [Related] [New Search]