These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Osteointegrative and microgeometric comparison between micro-blasted and alumina blasting/acid etching on grade II and V titanium alloys (Ti-6Al-4V).
    Author: Granato R, Bonfante EA, Castellano A, Khan R, Jimbo R, Marin C, Morsi S, Witek L, Coelho PG.
    Journal: J Mech Behav Biomed Mater; 2019 Sep; 97():288-295. PubMed ID: 31146202.
    Abstract:
    This study evaluated the effect of alumina-blasted/acid-etched (AB/AE) or microabrasive blasting (C3-Microblasted) surface treatment on the osseointegration of commercially-pure Ti (grade II) and Ti-6Al-4V alloy (grade V) implants compared to as-machined surfaces. Surface characterization was performed by scanning electron microscopy and optical interferometry (IFM) to determine roughness parameters (Sa and Sq, n = 3 per group). One-hundred forty-four implants were placed in the radii of 12 beagle dogs, for histological (n = 72, bone-to-implant contact - BIC and bone-area-fraction occupancy -BAFO) and torque to interface failure test at 3 and 6 weeks (n = 72). SEM and IFM revealed a significant increase in surface texture for AB/AE and C3-Microblasted surfaces compared to machined surface, regardless of titanium substrate. Torque-to-interface failure test showed significant increase in values from as-machined to AB/AE and to C3-Microblasted. Considering time in vivo, alloy grade, and surface treatment, the C3-microblasted presented higher mean BIC values relative to AB/AE and machined surfaces for both alloy types. BAFO levels were significantly higher for both textured surfaces groups relative to the machined group at 3 weeks, but differences were not significant between the three surfaces for each alloy type at 6 weeks. Surface treatment resulted in roughness that improved osseointegration in Grade II and V titanium substrates.
    [Abstract] [Full Text] [Related] [New Search]