These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Localized Context-Dependent Effects of the "Ambush" Hypothesis: More Off-Frame Stop Codons Downstream of Shifty Codons.
    Author: Seligmann H.
    Journal: DNA Cell Biol; 2019 Aug; 38(8):786-795. PubMed ID: 31157984.
    Abstract:
    The ambush hypothesis speculates that off-frame stop codons increase translational efficiency after ribosomal frameshifts by stopping early frameshifted translation. Some evidences fit this hypothesis: (1) synonymous codon usages increase with their potential contribution to off-frame stops; (2) the genetic code assigns frequent amino acids to codon families contributing to off-frame stops; (3) positive biases for off-frame stops (AT rich) occur despite adverse nucleotide (GC) biases; and (4) mitochondrial off-frame stop codon densities increase with ribosomal structural instability, potential proxy of frameshift frequencies. In this study, analyses of vertebrate mitogenes and tRNA synthetase genes from all superkingdoms and viruses test a new prediction of the ambush hypothesis: sequences immediately downstream of frameshift-inducing homopolymer codons (AAA, CCC, GGG, and TTT) are off-frame stop rich. Codons immediately downstream of homopolymer codons form more than average off-frame stops, biases are stronger than for corresponding upstream distances and for any other group of synonymous codons. Sequences downstream of that high-density region are off-frame stop depleted. This decrease suggests that off-frame stops, combined with suppressor tRNAs regulate translation of overlapping coding sequences. Results show the predictive power of the ambush hypothesis, from macroevolutionary (genetic code structure) to detailed gene sequence anatomy.
    [Abstract] [Full Text] [Related] [New Search]