These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microvascular pressures measured by micropuncture in lungs of newborn rabbits. Author: Fike CD, Lai-Fook SJ, Bland RD. Journal: J Appl Physiol (1985); 1987 Sep; 63(3):1070-5. PubMed ID: 3115947. Abstract: The purpose of this study was to determine the pattern of vascular pressure drop in newborn lungs and to define the contribution of active vasomotor tone to this longitudinal pressure profile. We isolated and perfused with blood the lungs from 22 rabbit pups, 5-19 days old. We inflated the lungs to a constant airway pressure of 7 cmH2O, and at constant blood flow, we maintained outflow pressure in the circulation greater than airway pressure at the level of micropuncture (zone 3). By the use of glass micropipettes and a servo-nulling device, we measured pressures in small (20-60 micron diam) subpleural arterioles and venules in the lungs of 13 newborn rabbits. We found that 60% of the pressure drop was in arteries, 31% in microvessels of less than 20-60 micron diam, and 9% in veins. In the lungs of an additional nine rabbit pups we measured microvascular pressures before and after the addition to the perfusate of the vasodilator, papaverine hydrochloride. We found that removal of vasomotor tone resulted in a 33% reduction in total lung vascular resistance, which resulted from a decrease in pressure in arterial vessels, with no change in microvascular pressure. These findings indicate that arteries of greater than 60 micron diam constitute the major source of vascular resistance in isolated perfused newborn rabbit lungs.[Abstract] [Full Text] [Related] [New Search]