These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quantitative Computed Tomography (QCT) of the Distal Forearm in Men Using a Spiral Whole-Body CT Scanner - Description of a Method and Reliability Assessment of the QCT Pro Software.
    Author: Hanusch BC, Tuck SP, Mekkayil B, Shawgi M, McNally RJQ, Walker J, Francis RM, Datta HK.
    Journal: J Clin Densitom; 2020; 23(3):418-425. PubMed ID: 31160147.
    Abstract:
    The Mr F study investigates the pathogenesis of low trauma distal forearm fractures in men and includes volumetric bone mineral density (vBMD) measurements at the ultradistal forearm as there are no current data. A standard 64 slice CT scanner was used to determine if it was possible to adapt the existing Mindways quantitative computed tomography Pro software for measuring vBMD values at the hip and spine sites. For calculation of intra- and interobserver reliability 40 forearm scans out of the 300 available were chosen randomly. The images were analyzed using the Slice Pick module and Bone Investigational Toolkit. The 4% length of the radius was chosen by measuring the length of the radius from the scaphoid fossa distally to the radial head. The acquired image then underwent extraction, isolation, rotation, and selection of region of interest in order to generate a report on vBMD. A cross-sectional image was created to allow the generation of data on the cortical and trabecular components separately. Repeat analyses were undertaken by 3 independent observers who were blinded as to whether the image was from a participant with or without fracture. The images were presented in random order at each time point. The following parameters were recorded: cortical cross sectional area, total vBMD, trabecular vBMD, and cortical vBMD (CvBMD). Data were analyzed by calculating intraclass correlation coefficients for intra- and interobserver reliability. The lowest values occurred at the CvBMD with intraobserver reliability of 0.92 (95% confidence interval [CI] of 0.86-0.96) and interobserver reliability of 0.92 (95% CI 0.89-0.96). All other parameters had reliability values between 0.97 and 0.99 with tighter 95% CI than for CvBMD. The method of adapting the Mindways Pro software using a standard CT to produce vBMD and structural data at the ultradistal radius is reliable.
    [Abstract] [Full Text] [Related] [New Search]