These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The normal replication terminus of the Bacillus subtilis chromosome, terC, is dispensable for vegetative growth and sporulation.
    Author: Iismaa TP, Wake RG.
    Journal: J Mol Biol; 1987 May 20; 195(2):299-310. PubMed ID: 3116262.
    Abstract:
    The Bacillus subtilis strains CU1693, CU1694 and CU1695 were shown by hybridization analysis to carry large deletions of the terminus region that originated within discrete fragments of the SP beta prophage genome. The absence of terC in CU1693 was demonstrated definitively by the identification of a novel junction fragment comprising SP beta DNA and DNA that lies on the other side of terC in the parent strain. This represented the deletion of approximately 230 kb of CU1693 DNA, with the removal of approximately 150 kb to the left of terC and approximately 80 kb to the right of terC. The lack of hybridization of CU1694 and CU1695 DNA to cloned DNA carrying the terC sequence and to cloned DNAs flanking terC suggested that terC is absent from the chromosome of each of these strains also, and that the deletions in CU1694 and CU1695 extend beyond the segment of the terminus region that has been mapped and cloned. The normal growth rate and morphology of CU1693, CU1694 and CU1695 relative to the parent strain when grown in complex medium indicated dispensability of terC for vegetative growth and division. B. subtilis SU153 was constructed using a specific deletion-insertion vector that was designed to effect the deletion of 11.2kb of DNA spanning terC, with the removal of approximately 9.7kb to the left of terC and approximately 1.kb to the right of terC. This manipulation did not introduce any readily detectable auxotrophic requirement. Physiological characterization of SU153 confirmed the dispensability of terC for vegetative growth and cell division, and also established the lack of requirement of terC for the specialized cell division that is associated with formation of the bacterial endospore.
    [Abstract] [Full Text] [Related] [New Search]