These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Highly efficient and stable p-LaFeO3/n-ZnO heterojunction photocatalyst for phenol degradation under visible light irradiation.
    Author: Ren T, Jin Z, Yang J, Hu R, Zhao F, Gao X, Zhao C.
    Journal: J Hazard Mater; 2019 Sep 05; 377():195-205. PubMed ID: 31163348.
    Abstract:
    A series of catalysts with p-LaFeO3/n-ZnO heterostructure were designed and prepared by hydrothermal method. The structure, surface topographies, optical properties and interfacial interactions of these photocatalysts were analyzed by XRD, SEM, TEM, PL, Uv-vis DRS, XPS, COD, TOC etc., indicating that p-n heterojunction formed at the interface between p-LaFeO3 and n-ZnO, which enhanced the photocatalytic activity. Among them, the 20%-p-LaFeO3/n-ZnO composite exhibits the best activity for the phenol degradation under visible light. The superior photocatalytic activity of the heterojunction photocatalyst is mainly attributed to the formation of p-n heterojunction which leads to an efficient separation of photogenerated electron-hole pairs. Besides, the 20%-p-LaFeO3/n-ZnO heterojunction photocatalyst shows the excellent photocatalytic stability after 4 cycles. And from the free radical capture experiment, the degradation of phenol is dominated by the oxidation reaction of hydroxyl radicals and direct hole oxidation. What's more, certain intermediates were detected by HPLC and 3D-EEMs. Therefore, a photocatalytic mechanism of the 20%-p-LaFeO3/n-ZnO p-n heterojunction catalyst for phenol degradation under visible light irradiation was proposed.
    [Abstract] [Full Text] [Related] [New Search]