These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: omega-Oxidation of fatty acids and the acetylation p-aminobenzoic acid. Author: Hemmelgarn E, Schumann WC, Margolis J, Kumaran K, Landau BR. Journal: Biochim Biophys Acta; 1979 Feb 26; 572(2):298-306. PubMed ID: 311659. Abstract: p-Aminobenzoic acid was fed to normal and alloxan-induced diabetic rats injected with [omega-14C]labeled and [2-14C]labeled fatty acids. The p-acetamidobenzoic acid that was excreted was hydrolyzed to yield acetate which was degraded. The distribution of 14C in the acetates formed when an [omega-14C]labeled fatty acid was injected was similar to that when a [2-14C]labeled fatty acid was injected. This contrasts with the finding that in acetates from 2-acetamido-4-phenylbutyric acid excreted when 2-amino-4-phenylbutyric acid was fed, there was a difference in the distributions of 14C, a difference attributable to omega-oxidation of the fatty acid. Acetylation of p-aminobenzoic acid is then concluded to occur in a different cellular environment than that of 2-amino-4-phenylbutyric acid, one in which omega-oxidation is not functional. When 2-amino-4-phenylbutyric acid was fed and [6-14C]palmitic acid injected, rather than [16-14C]palmitic acid, the distribution of 14C in acetate was the same as when [2-14C]palmitic acid was injected. This indicates that the dicarboxylic acid formed on omega-oxidation of palmitic acid does not undergo beta-oxidation to form succinyl-CoA. Thus, glucose is not formed via omega-oxidation of long-chain fatty acid.[Abstract] [Full Text] [Related] [New Search]