These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: microRNA-126 inhibits tube formation of HUVECs by interacting with EGFL7 and down-regulating PI3K/AKT signaling pathway.
    Author: Li Q, Cheng K, Wang AY, Xu QG, Fu ZF, He SY, Xu PX.
    Journal: Biomed Pharmacother; 2019 Aug; 116():109007. PubMed ID: 31170663.
    Abstract:
    It's critical for tube formation and angiogenesis to repair ischemic myocardium or stroke. This study aimed to investigate role of microRNA-126 (miR-126) in tube formation in human umbilical vein endothelial cells (HUVECs) and associated mechanisms. Primary neural stem cells (NSCs) and HUVECs were cultured and transfected with microRNA-126 mimics and miR-126 inhibitor. Cell counting kit-8 (CCK-8) and cell cycle assay were conducted for evaluating NSCs viability. Transwell assay was conducted to observe invasive ability of HUVECs. Quantitative real-time PCR (qRT-PCR) assay was used to examine epidermal growth factor like domain 7 (EGFL7) and miR-126 mRNA both in vitro and animal models. Tube forming capability was evaluated in HUVECs. Dual luciferase assay was performed to evaluate interaction between miR-126 and EGFL7 gene. Western blot assay was used to determine phosphoinositide-3-kinase/protein kinase-B (PI3K/AKT) signaling molecules and EGFL7. The results indicated that miR-126 significantly decreased cell viability, inhibited invasive ability and modulated cell cycle of NSCs compared to miR-NC group (p < 0.05). miR-126 significantly inhibited tube formation of HUVECs compared to miR-NC group (p < 0.05). miR-126 significantly down-regulated EGFL7 mRNA and protein expression compared to miR-NC (p < 0.05). Atorvastatin significantly increased CD34 and enhanced EGFL7 expression in traumatic brain injury (TBI) rats brain tissues compared to Model group (p < 0.05). miR-126 significantly down-regulated and atorvastatin up-regulated PI3K/AKT signaling pathway (p < 0.05). Atorvastatin significantly increased EGFL7 and down-regulated miR-126 expression in TBI rats brain tissues compared to Model group (p < 0.05). miR-126 interacted with and negatively correlated with EGFL7 gene both in vitro and in TBI models. In conclusion, microRNA-126 inhibited tube formation of HUVECs by interacting with EGFL7 and down-regulating PI3K/AKT signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]