These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chloroquine resistance of Plasmodium berghei: biochemical basis and countermeasures. Author: Salganik RI, Pankova TG, Chekhonadskikh TV, Igonina TM. Journal: Bull World Health Organ; 1987; 65(3):381-6. PubMed ID: 3117393. Abstract: Microsomal monooxygenases, enzymes that metabolize xenobiotics, may be responsible for the chloroquine resistance of malarial parasites. Plasmodium cells contain cytochrome P-450 and exhibit aryl hydrocarbon hydroxylase and aminopyrine N-dimethylase activity, two monooxygenases that inactivate chloroquine. The activities of these monooxygenases are considerably higher in chloroquine-resistant strains of Plasmodium berghei than in the chloroquine-sensitive strain of the parasite. Inhibitors of microsomal monooxygenases have the potential to overcome the chloroquine resistance of Plasmodium spp., and, of those inhibitors tested, the copper-lysine complex, copper(lysine)(2), was the most effective.[Abstract] [Full Text] [Related] [New Search]