These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multi-stimuli responsive nanosystem modified by tumor-targeted carbon dots for chemophototherapy synergistic therapy.
    Author: Wang X, Li X, Mao Y, Wang D, Zhao Q, Wang S.
    Journal: J Colloid Interface Sci; 2019 Sep 15; 552():639-650. PubMed ID: 31173992.
    Abstract:
    In this work, a tumor-targeted and multi-stimuli responsive drug delivery system combining infrared thermal imaging of cells with thermo-chemotherapy was developed. Oxidized mesoporous carbon nanoparticles (MCNs-COOH) with high photothermal conversion ability (photothermal transduction efficiency η = 27.4%) in near-infrared (NIR) region were utilized to encapsulate doxorubicin (DOX). The outer surfaces of MCNs-COOH were capped with multifunctional carbon dots (CDHA) as simultaneous smart gatekeepers, a tumor targeting moiety and a fluorescent probe. NIR laser irradiation killed cancer cells through NIR-light induced hyperthermia, facilitated chemotherapeutic drug release and enhanced the sensitivity of tumor cells to drugs. The therapeutic efficacy in two-dimensional (2D) and three-dimensional (3D) cells demonstrated that MC-CDHA loading DOX (MC-CDHA/DOX) had good chemo-photothermal synergistic antitumor effects (combination index of CI = 0.448). The biodistribution and pharmacodynamics experiments of MC-CDHA/DOX in the 4T1 tumor model indicated that MCNs-COOH prolonged the residence time of DOX in tumor tissues and therefore actualized effective synergistic photothermal chemotherapy. By combining these excellent capabilities, the tumor-targeted and multi-stimuli responsive drug delivery system can be utilized as a visible nanoplatform for chemophotothermal synergistic therapy.
    [Abstract] [Full Text] [Related] [New Search]