These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Surface-enhanced Raman spectroscopic single step detection of Vibrio parahaemolyticus using gold coated polydimethylsiloxane as the active substrate and aptamer modified gold nanoparticles.
    Author: Wu S, Duan N, Shen M, Wang J, Wang Z.
    Journal: Mikrochim Acta; 2019 Jun 10; 186(7):401. PubMed ID: 31183576.
    Abstract:
    A method is described for single-step detection of V. parahaemolyticus in seafood via aptamer-based SERS. A gold-coated polydimethylsiloxane (PDMS) film was used for the enhancement of Raman scattering. The Raman reporter 4-mercaptobenzoic acid was linked to aptamer modified gold nanoparticles (AuNPs) served as a signalling probe. The negatively charged signalling probe was assembled onto the cysteamine-modified Au-PDMS film through electrostatic adsorption. On addition of V. parahaemolyticus, it will be bound by the aptamer as a biorecognition element, and this leads to the dissociation of the signalling probe from the Au-PDMS film. Hence, the Raman signal (at 1592 cm-1) decreases. The assay has a wide linear response that covers the 1.2 × 102 to 1.2 × 106 cfu·mL-1 V. parahaemolyticus concentration range. The detection limit is 12 cfu·mL-1. The method was successfully applied to the determination of V. parahaemolyticus in oyster and salmon samples. Graphical abstract Schematic presentation of a surface-enhanced Raman spectroscopic method for single step detection of Vibrio parahaemolyticus using gold coated polydimethylsiloxane as the active substrate and aptamer modified gold nanoparticles. This solid substrate simplified the analysis procedures and enhanced the sensitivity.
    [Abstract] [Full Text] [Related] [New Search]