These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reduction of industrial iron pollution promotes phosphorus internal loading in eutrophic Hamilton Harbour, Lake Ontario, Canada. Author: Markovic S, Liang A, Watson SB, Depew D, Zastepa A, Surana P, Byllaardt JV, Arhonditsis G, Dittrich M. Journal: Environ Pollut; 2019 Sep; 252(Pt A):697-705. PubMed ID: 31185359. Abstract: Diagenetic sediment phosphorus (P) recycling is a widespread phenomenon, which causes degradation of water quality and promotes harmful algal blooms in lakes worldwide. Strong P coupling with iron (Fe) in some lakes is thought to inhibit diagenetic P efflux, despite elevated P concentrations in the sediment. In these sediments, the high Fe content leads to P scavenging on ferric Fe near the sediment surface, which increases the overall P retention. Reduced external Fe inputs in such lakes due to industrial pollution control may lead to unintended consequences for sediment P retention. Here, we study sediment geochemistry and sediment-water interactions in the historically polluted Hamilton Harbour (Lake Ontario, Canada) which has undergone 30 years of restoration efforts. We investigate processes controlling diagenetic P recycling, which has previously been considered minor due to historically high Fe loading. Our results demonstrate that present sediment P release is substantial, despite sediment Fe content reaching 6.5% (dry weight). We conclude that the recent improvement of wastewater treatment and industrial waste management practices has reduced Fe pollution, causing a decrease in diagenetically reactive Fe phases, resulting in the reduction of the ratio of redox-sensitive P and Fe, and the suppression of P scavenging on Fe oxyhydroxides.[Abstract] [Full Text] [Related] [New Search]