These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Growth hormone response to GRF 1-44 in children following cranial irradiation for central nervous system tumors. Author: Oberfield SE, Kirkland JL, Frantz A, Allen JC, Levine LS. Journal: Am J Pediatr Hematol Oncol; 1987; 9(3):233-8. PubMed ID: 3118729. Abstract: The growth hormone (GH) responses to (A) GRF 1-44, 1 microgram/kg i.v., (B) L-dopa and either arginine, insulin, or glucagon, and (C) exercise were evaluated in 10 children (3 girls, 7 boys; ages 10 years to 15 years, 8 months), 2-10.75 years following cranial irradiation for medulloblastoma (8 patients), pineoblastoma (1 patient), and a fourth ventricular ependymoma (1 patient). Nine of the 10 children had abnormal growth rates. All children were euthyroid at the time of the study. The mean 0-60-min peak GH response to GRF (10.06 +/- 2.6 ng/ml) in the patients was less than the mean peak GH response (29 +/- 2.3 ng/ml) in the control children (n = 7). In 6 patients (5 with poor growth rates), a decreased GH response was noted to GRF and all other tests. Of the remaining patients, all with poor growth rates, two patients demonstrated an adequate response to GRF and pharmacologic testing; one patient had a normal GH response to GRF with a low GH response to pharmacologic testing; and one patient had a low response to GRF, despite a normal response to both exercise and pharmacologic testing. The decrease in mean peak GH response to GRF in the patient population confirms that radiation to the hypothalamic-pituitary region produces abnormalities in growth hormone release. Furthermore, in these patients, discordant GH responses to GRF and pharmacologic or physiologic tests can be observed. The abnormality in growth hormone release may result from a hypothalamic dysfunction in GRF release and/or damage to GH secretory pituicytes.[Abstract] [Full Text] [Related] [New Search]