These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: miR-200c-3p Suppresses the Proliferative, Migratory, and Invasive Capacities of Nephroblastoma Cells via Targeting FRS2. Author: Li T, Zhao P, Li Z, Wang CC, Wang YL, Gu Q. Journal: Biopreserv Biobank; 2019 Oct; 17(5):444-451. PubMed ID: 31194576. Abstract: Objectives: miR-200c-3p has been shown to serve as a tumor suppressor in various tumor types. However, the biological function of miR-200c-3p in nephroblastoma remains unknown. This study aims to investigate the biological function and regulatory mechanisms of miR-200c-3p in nephroblastoma development. Methods: The expression of miR-200c-3p in nephroblastoma tissues and cells was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). The effects of miR-200c-3p on the proliferation and cell cycle of SK-NEP-1 nephroblastoma cell line were evaluated by CCK-8 assay, colony formation assay, and flow cytometry. The effects of miR-200c-3p on the migratory and invasive capacities of SK-NEP-1 cells were measured by wound healing assay and transwell assay. The ability of miR-200c-3p to target fibroblast growth factor receptor substrate 2 (FRS2) was detected by quantitative PCR, western blot, and luciferase reporter assay. Results: The expression of miR-200c-3p was significantly downregulated in nephroblastoma tissues and cells compared with that in normal renal tissues and cells. miR-200c-3p inhibited the proliferative, migratory, and invasive capacities of nephroblastoma cells by targeting FRS2. Conclusions: miR-200c-3p suppresses the malignant behaviors of nephroblastoma cells by downregulating the expression of FRS2.[Abstract] [Full Text] [Related] [New Search]