These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In situ deposition of Ag/AgCl on the surface of magnetic metal-organic framework nanocomposite and its application for the visible-light photocatalytic degradation of Rhodamine dye. Author: Mahmoodi NM, Taghizadeh A, Taghizadeh M, Abdi J. Journal: J Hazard Mater; 2019 Oct 15; 378():120741. PubMed ID: 31200227. Abstract: Herein, NH2-MIL-125(Ti) (NMT) as one of the known stable metal-organic frameworks (MOFs) in aqueous solution was successfully magnetized with CoFe2O4 nanoparticles through the hydrothermal method. The Ag/AgCl as a plasmonic photocatalyst was assembled on the CoFe2O4/NMT (CFNMT) at room temperature by in situ deposition, and photo-reduction methods to improve the photocatalytic activity of CFNMT under LED visible light. The prepared materials were fully characterized by SEM/EDX, TEM, FTIR, XRD, UV-DRS, and VSM analysis. Rhodamin B (RhB) was selected as the pollutant model. The results showed that the Ag/AgCl@CFNMT had super-fast degradation ability of RhB molecule due to the synergetic effect between Ag/AgCl and CFNMT in comparison with NMT and CFNMT. The introduced Ag/AgCl on the surface of CFNMT increased absorption of photons in the visible region and enhanced the transfer and separation of the produced charge on the contact area between Ag/AgCl and CFNMT. Also, after seven times recycling, besides the simple magnetic separation of Ag/AgCl@CFNMT from liquid media, the composite still showed high photodegradation ability (89%).[Abstract] [Full Text] [Related] [New Search]