These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Incorporated region detection and classification using deep convolutional networks for bone age assessment. Author: Bui TD, Lee JJ, Shin J. Journal: Artif Intell Med; 2019 Jun; 97():1-8. PubMed ID: 31202395. Abstract: Bone age assessment plays an important role in the endocrinology and genetic investigation of patients. In this paper, we proposed a deep learning-based approach for bone age assessment by integration of the Tanner-Whitehouse (TW3) methods and deep convolution networks based on extracted regions of interest (ROI)-detection and classification using Faster-RCNN and Inception-v4 networks, respectively. The proposed method allows exploration of expert knowledge from TW3 and features engineering from deep convolution networks to enhance the accuracy of bone age assessment. The experimental results showed a mean absolute error of about 0.59 years between expert radiologists and the proposed method, which is the best performance among state-of-the-art methods.[Abstract] [Full Text] [Related] [New Search]