These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of walking surface, late-cueing, physiological characteristics of aging, and gait parameters on turn style preference in healthy, older adults. Author: Dixon PC, Smith T, Taylor MJD, Jacobs JV, Dennerlein JT, Schiffman JM. Journal: Hum Mov Sci; 2019 Aug; 66():504-510. PubMed ID: 31203020. Abstract: Turning while walking is a crucial component of locomotion, often performed on irregular surfaces with little planning time. Turns can be difficult for some older adults due to physiological age-related changes. Two different turning strategies have been identified in the literature. During step turns, which are biomechanically stable, the body rotates about the outside limb, while for spin turns, generally performed with closer foot-to-foot distance, the inside limb is the main pivot point. Turning strategy preferences of older adults under challenging conditions remains unclear. The aim of this study was to determine how turning strategy preference in healthy older adults is modulated by surface features, cueing time, physiological characteristics of aging, and gait parameters. Seventeen healthy older adults (71.5 ± 4.2 years) performed 90° turns for two surfaces (flat, uneven) and two cue conditions (pre-planned, late-cue). Gait parameters were identified from kinematic data. Measures of lower-limb strength, balance, and reaction-time were also recorded. Generalized linear (logistic) regression mixed-effects models examined the effect of (1) surface and cuing, (2) physiological characteristics of ageing, and (3) gait parameters on turn strategy preference. Step turns were preferred when the condition was pre-planned (p < 0.001) (model 1) and when the gait parameters of stride regularity and maximum acceleration decreased (p = 0.010 and p = 0.039, respectively) (model 3). Differences in turn strategy selection under dynamic conditions ought to be evaluated in future fall-risk research and rehabilitation utilizing real-world activity monitoring.[Abstract] [Full Text] [Related] [New Search]