These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Introgression of novel genetic diversity to improve soybean yield.
    Author: Hegstad JM, Nelson RL, Renny-Byfield S, Feng L, Chaky JM.
    Journal: Theor Appl Genet; 2019 Sep; 132(9):2541-2552. PubMed ID: 31209537.
    Abstract:
    Exotic soybean germplasm can be used to increase novel genetic diversity and yield potential of cultivars. Modern North American soybean (Glycine max [L.] Merr.) cultivars have been derived from only a few ancestors. The objectives of this research were to develop breeding lines with novel genetic diversity that were equivalent to the yield of a commercial cultivar parent and within those lines identify regions of novel genetic diversity that were not present in the Corteva Agriscience elite soybean germplasm pool. Nine lines created from diverse germplasm (USDA-ARS breeding program at the University of Illinois) were crossed to a RM34Elite parent to develop populations and sublines for yield testing. Across yield tests at 30 locations conducted between 2014 and 2016, eleven breeding lines were identified that were equivalent to or significantly higher in yield when compared to the RM34Elite parent. Among the eleven final lines, the introgressed novel haplotypes that were not present in current Corteva Agriscience soybean germplasm occupied an estimated 0.8-10.0% of the genome. JH-2665, the highest yielding line across 3 years of testing, yielded 280 kg/ha more than the RM34Elite parent and had an estimated 8.6% of the genome containing novel diversity haplotypes. JH-2665 had 96 regions of novel diversity introgression ranging from 1 to 12 cM in size, with six regions over 6 cM in length. The methods reported demonstrate how high-yielding lines with novel genetic diversity can be developed. This material will be useful for expanding the genetic diversity needed to improve genetic gain in future soybean cultivar development.
    [Abstract] [Full Text] [Related] [New Search]