These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protection against Pseudomonas aeruginosa infection by passive transfer of anti-flagellar serum.
    Author: Drake D, Montie TC.
    Journal: Can J Microbiol; 1987 Sep; 33(9):755-63. PubMed ID: 3121159.
    Abstract:
    The specificity of adsorbed flagellar antisera for H-antigen was demonstrated in vitro by cross-agglutination assays, motility inhibition, and an ELISA. The specific flagellar antibody was determined to be an IgG. Complete protection against burn wound sepsis was achieved with flagellar antisera. Cross-protection experiments revealed that protection was not only H-antigen dependent, but specific for the flagella antigen type. Antiserum raised against b-type flagella would only protect against homologous bacterial challenge and not against a-type flagellated strains. Results using a-type antisera were consistent, giving protection only against the homologous strain. In contrast, protective capacity was selectively removed from antisera by adsorbing with Fla+ cells. Bacteria colonized the burn wounds of passively protected mice to similar levels as seen in nonprotected animals, but the colonization remained localized and did not result in systemic infection, a pattern similar to infections with motility mutants observed in other studies. Animals rendered neutropenic prior to burning were not protected with flagellar antisera. These data suggested a role for phagocytic cells in protection. Immobilization by flagellar antiserum was observed both by microscopic studies and by inhibition of colony spreading. Antiflagellar antibody is hypothesized as exerting its protective capacity possibly in two ways; first by inhibiting the motility of invading bacteria by binding to the flagellum and immobilizing the bacteria, and secondly by acting as an opsonin, targeting either immobilized or mobile cells for phagocytosis.
    [Abstract] [Full Text] [Related] [New Search]