These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics. Author: Zhang Y, Gou W, Zhang Y, Zhang H, Wu C. Journal: Comp Biochem Physiol Part D Genomics Proteomics; 2019 Sep; 31():100602. PubMed ID: 31212116. Abstract: Tibetan chicken, an indigenous breed, is highly adapted to the extreme environment of the Qinghai-Tibet Plateau. It serves as a model organism to identify genetic differences between hypoxia-adapted and lowland breeds. However, the mechanisms underlying hypoxia adaptation are yet unclear. This study aimed to identify differently abundant proteins (DAPs) and elucidate the mechanisms involved in hypoxic adaptation in the Tibetan chicken. In this study, we obtained proteome data for the embryonic heart tissues of Tibetan and Chahua chickens incubated under hypoxia (TCH and CHH) and normoxia (TCN and CHN) using isobaric tags for relative and absolute quantitation (iTRAQ) technology. We identified 4210 proteins from 53,352 unique peptides in the heart tissue of chicken embryos. Pairwise TCH vs. CHH, TCH vs. TCN, CHH vs. CHN, and TCN vs. CHN comparisons revealed 118, 176, 103, and 162 differently abundant proteins, respectively. Several key proteins (EGLN1, MAP2K2, MYLK, QARS, NOTCH2, and MYH7) and pathways (glutathione metabolism, PPAR signaling pathway, and vascular smooth muscle contraction) were identified and considered important candidates for high-altitude adaptation in Tibetan chicken. This study provides novel insights into the chicken embryonic heart tissue and furthers the current understanding of the mechanisms of survival among animals in high-altitude environments.[Abstract] [Full Text] [Related] [New Search]