These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enantioselective Hydrolysis of Styrene Oxide and Benzyl Glycidyl Ether by a Variant of Epoxide Hydrolase from Agromyces mediolanus. Author: Jin H, Li Y, Zhang Q, Lin S, Yang Z, Ding G. Journal: Mar Drugs; 2019 Jun 20; 17(6):. PubMed ID: 31226863. Abstract: Enantiopure epoxides are versatile synthetic intermediates for producing optically active pharmaceuticals. In an effort to provide more options for the preparation of enantiopure epoxides, a variant of the epoxide hydrolase (vEH-Am) gene from a marine microorganism Agromyces mediolanus was synthesized and expressed in Escherichia coli. Recombiant vEH-Am displayed a molecular weight of 43 kDa and showed high stability with a half-life of 51.1 h at 30 °C. The purified vEH-Am exhibited high enantioselectivity towards styrene oxide (SO) and benzyl glycidyl ether (BGE). The vEH-Am preferentially converted (S)-SO, leaving (R)-SO with the enantiomeric excess (ee) >99%. However, (R)-BGE was preferentially hydrolyzed by vEH-Am, resulting in (S)-BGE with >99% ee. To investigate the origin of regioselectivity, the interactions between vEH-Am and enantiomers of SO and BGE were analyzed by molecular docking simulation. In addition, it was observed that the yields of (R)-SO and (S)-BGE decreased with the increase of substrate concentrations. The yield of (R)-SO was significantly increased by adding 2% (v/v) Tween-20 or intermittent supplementation of the substrate. To our knowledge, vEH-Am displayed the highest enantioselectivity for the kinetic resolution of racemic BGE among the known EHs, suggesting promising applications of vEH-Am in the preparation of optically active BGE.[Abstract] [Full Text] [Related] [New Search]