These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reductive inactivation of soybean lipoxygenase 1 by catechols: a possible mechanism for regulation of lipoxygenase activity.
    Author: Kemal C, Louis-Flamberg P, Krupinski-Olsen R, Shorter AL.
    Journal: Biochemistry; 1987 Nov 03; 26(22):7064-72. PubMed ID: 3122826.
    Abstract:
    Nordihydroguaiaretic acid (NDGA), one of the most efficient inhibitors of lipoxygenases, is shown, by electron paramagnetic resonance, circular dichroism, and fluorescence studies, to reduce the catalytically active ferric soybean lipoxygenase 1 (Eox) to the inactive ferrous form (Ered). In decreasing order of reactivity, the following also reduce Eox: catechol greater than hydroquinone greater than 2,6-di-tert-butyl-4-methylphenol greater than esculetin greater than caffeic acid approximately equal to alpha-tocopherol greater than norepinephrine greater than dithiothreitol. The reduction of Eox by NDGA (kappa = 8.1 X 10(6) M-1 S-1, pH 9.0, 25 degrees C) is almost as fast as the Eox-catalyzed conversion of linoleate (LH) to 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoate (LOOH) and the oxidation of Ered by LOOH to give Eox. Thus, NDGA can efficiently inhibit the Eox-catalyzed conversion of LH to LOOH by reducing Eox to the inactive Ered, thereby diminishing the turnover rate. Lipoxygenase catalyzes the oxidation of NDGA by LOOH at a rate that is consistent with the independently determined rate constant for the reduction of Eox by NDGA. All four reducing equivalents from the two catechol groups in NDGA can be utilized in the reduction of Eox, leading to the consumption of 4 mol of LOOH/mol of NDGA initially present. Because the catalytically inactive Ered is oxidized by fatty acid hydroperoxides (e.g., LOOH) to give the active Eox, reducing agents such as NDGA are most effective as lipoxygenase inhibitors at low hydroperoxide concentrations. Our results suggest that in vivo, where lipid hydroperoxides are maintained at low steady-state levels, reduction of lipoxygenase from the ferric to ferrous state may be important in the regulation of lipoxygenase activity and hence leukotriene biosynthesis.
    [Abstract] [Full Text] [Related] [New Search]