These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glutaminergic signaling in the caudate nucleus is required for behavioral sensitization to methylphenidate. Author: King N, Floren S, Kharas N, Thomas M, Dafny N. Journal: Pharmacol Biochem Behav; 2019 Sep; 184():172737. PubMed ID: 31228508. Abstract: Methylphenidate (MPD) is a widely prescribed psychostimulant for the treatment of attention deficit hyperactivity disorder, and is growing in use as a recreational drug and academic enhancer. MPD acts on the reward/motive and motor circuits of the CNS to produce its effects on behavior. The caudate nucleus (CN) is known to be a part of these circuits, so a lesion study was designed to elucidate the role of the CN in response to acute and chronic MPD exposure. Five groups of n = 8 rats were used: control, sham CN lesions, non-specific electrolytic CN lesions, dopaminergic-specific (6-OHDA toxin) CN lesion, and glutaminergic-specific (ibotenic acid toxin) CN lesions. On experimental day (ED) 1, all groups received saline injections. On ED 2, surgeries took place, followed by a 5-day recovery period (ED 3-7). Groups then received six daily MPD 2.5 mg/kg injections (ED 9-14), then three days of washout with no injection (ED 15-17), followed by a re-challenge with the previous 2.5 mg/kg MPD dose (ED 18). Locomotive activity was recorded for 60 min after each injection by a computerized animal activity monitor. The electrolytic CN lesion group responded to the MPD acute and chronic exposures similarly to the control and sham groups, showing an increase in locomotive activity, i.e. sensitization. The dopaminergic-specific CN lesion group failed to respond to MPD exposure both acute and chronically. The glutaminergic-specific CN lesion group responded to MPD exposure acutely but failed to manifest chronic effects. This confirms the CN's dopaminergic system is necessary for MPD to manifest its acute and chronic effects on behavior, and demonstrates that the CN's glutaminergic system is necessary for the chronic effects of MPD such as sensitization. Thus, the dopaminergic and glutaminergic components of the CN play a significant role in differentially modulating the acute and chronic effects of MPD respectively.[Abstract] [Full Text] [Related] [New Search]