These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sinomenine exerts antitumour effect in gastric cancer cells via enhancement of miR-204 expression. Author: Yuan H, Zhang J, Li F, Li W, Wang H. Journal: Basic Clin Pharmacol Toxicol; 2019 Nov; 125(5):450-459. PubMed ID: 31243880. Abstract: Gastric carcinoma (GC) is a pernicious neoplasm with high morbidity and mortality. Sinomenine (SIN) has long been exploited to heal rheumatoid arthritis. Recently, SIN has been discovered to exert the antitumour functions in diverse cancers. However, the impacts of SIN on GC remain indistinct. We attempted to expose the antitumour effect of SIN on GC. MKN45 and SGC-7901 cells were administered with SIN for 24 hours, cell viability, proliferation, apoptosis, migration, invasion and the associated proteins in the above processes were examined via exploiting CCK-8, BrdU, flow cytometry, Transwell and Western blot. MiR-204 expression in GC tumour tissues, different GC cell lines and SIN-stimulated GC cells was investigated by executing RT-qPCR. The above cell biological processes were reassessed after transfection with miR-204 inhibitor. The latent mechanisms were probed by examining AMPK and Wnt/β-catenin pathways. We found that SIN memorably repressed cell proliferation, evoked apoptosis and affected CyclinD1, Bcl-2, Bax and cleaved-caspase-3 expression in MKN45 and SGC-7901 cells. Cell migration, invasion and expression of MMP-9 and Vimentin were all restrained by SIN stimulation. The increase of miR-204 was discovered in GC tissues and SIN-treated MKN45 and SGC-7901 cells. But suppression of miR-204 was observed in AGS, MKN28, MKN45 and SGC-7901 cells. Suppression of miR-204 overturned the inhibitory functions of SIN in MKN45 and SGC-7901 cells. Besides, SIN prohibited AMPK and Wnt/β-catenin pathways via enhancement of miR-204. In conclusion, these findings suggested that SIN exerted the antitumour activity in GC cells by hindering AMPK and Wnt/β-catenin pathways via enhancement of miR-204.[Abstract] [Full Text] [Related] [New Search]